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for analysis of EEG data. % ¢

W1todzistaw Duch

Neurocognitive Laboratory, Center for Modern Interdisciplinary Technologies,
& Dept. of Informatics, Faculty of Physics, Astronomy & Informatics,
Nicolaus Copernicus University, Torun, Poland

Google: Wlodzislaw Duch

Komisja Informatyki i Automatyki PAN, Poznan, 25/11/2022



Neuroinformatics

Zespot :Neuroinformatics and Artificial Intelligence”, w ramach
Uniwersyteckiego Centrum Doskonatosci (2020) IDUB
“Dynamika, analiza matematyczna i sztuczna inteligencja”.
Zrozumienie procesdw w mozgu i inspiracje dla algorytmow Al.

Komitet Informatyki PAN: Sekcja Nauk Obliczeniowych, e Vg
Bio i Neuro-informatyki.

Neuroinformatyka to chyba jedyna specjalnos¢ informatyki, w
ktérej mozna dosta¢ Nagrode Nobla (A. Cormack, G.Hounsfield,
1979 Computer Tomography)

Symulacje + Interpretacja sygnatow, czyli jak dziatajg mozgi.
Perspektywy neurotechnologii.

Planujemy z UW/IPPT++ co roku podsumowanie dziatan
w Polsce.


https://damsi.umk.pl/en/centre/neuroinformatics-and-artificial-intelligence/

Final goal: optimize brain processes!

On the threshold of a dream ...

To repair damaged brains and increase efficiency of

healthy brains we need to understand brain processes: '

1.

Create models of cognitive architectures that help N {
to understand information processing in the brain. 2%

Find fingerprints of specific brain activity (regions, i :
subnetworks) using neurotechnologies. el

Create diagnostic and therapeutic procedures.

Use neurofeedback decoding local activity and
functional connectivity to stimulate the brain.

Stimulate neuroplasticity in a closed loop,
monitoring brain activity and applying TMS, DCS, EM
and other forms of neuromodulation.

G-tec wireless NIRS/EEG on my head.



Brain disorders are costly

HEAVY BURDEN

Six categories of illness account for more than
half of the costs of brain disorders in Europe.
Indirect costs — such as working time lost to

ADDICTION
I €27.7 bn

»

B €13.6 bn

Direct health-care costs ||
Direct non-medical costs I
Indirect costs

illness — are responsible for about 40% of the
total financial burden.

ANXIETY DISORDERS

I €46.3 bn
€0.1bn

 €65.7h
: e

DEMENTIA
I €17 bn
€105.2bn | N €00.2 bn

TOTAL COST
(2010)

€797.7

BILLION

; _C9‘3.9 bn

HEADACHE
B €9 bn
No data

ineep

MOOD DISORDERS

I €26 bn
T €15.4 b

PSYCHOTIC DISORDERS

I €29 bn
= No data

Current costs - well over 1000 bn?
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BMI: time to connect our brains ...

Non-invasive, partially invasive and invasive methods carry increasing amount
of information, but are more difficult to implement.
EEG+ML still reigns supreme!

Supervised

Classifiers
(LDA, SVM)

I/0O Models for

Frequency Regression

Analysis (FIR, NN

: Decision
(Continuous) T I Process

Rate Coding

{Semi- Semi-Supervised
Continuous) Reinforcement
Learning

Spikes . Trajectory
(Point Unsupervised
Metrics
State
Machines
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Over 30 companies

Neurosky-MindWave Mobile 2; G-Tec, OpenBCl,
ANT-neuro, Waveguard, Google Wireless EEG ...



https://store.neurosky.com/pages/mindwave
https://www.google.com/search?q=Wireless+EEG

BCl tools

Combination of Virtual Reality with BCI has great potential.

InteraXon Looxid Labs Neurable




HD DCS for BCBI

Reading brain states =>
transforming to common
space => duplicating in
other brains ...

Depression, neuro-plasticity,
pain, psychosomatic
disorders, teaching!

Multielectrode DCS
stimulation with 256
electrodes induces changes
in the brain increasing
neuroplasticity.

But no-one really knows
why it works ...




BCBI: Brain-Computer-Brain

Bidirectional BCI
, External
Decode Encode >>> <<< — Controller
brain state stimulation — -:

Wireless data
& power

v

Recording

S Sense & Actuate
amplifier

Record Stimulate brain for

brain ==~ sensory feedback
signals

BCI + brain stimulation = BCBI — a closed loop through which the brain begins
to restructure itself. The body can be replaced by signals in Virtual Reality.



Invasive brain computer interfaces

d 1] ‘I'.-lrl mnT
1 |
3

A ||| . ' |J_ I
i ;'I%I I-I| __|"I|| .||Il‘--||-| rh

People with Parkinson's disease or compulsive-obsessive disorder who
have pacemakers implanted in their brain can regulate their behavior with
an external controller.



Epilepsy

The RNS® System

Responds in real time

The neurostimulator and detector stops attacks of drug-resistant epilepsy
before cramps occur. About 1% of people in the world have epilepsy.




Intracortical array
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A million nanowires in the brain?

DARPA initiative: Neural Engineering System Design (NESD) and other projects.

An interface that reads the impulses of 10® neurons, stimulates 10° neurons,
simultaneously reads and stimulates 103 neurons.

DARPA awarded grants to research groups for projects under the program
Electrical Prescriptions (ElectRx), whose aim is to develop BCBI systems
modulating the activity of peripheral nerves for therapeutic purposes.

Neural dust — microscopic wireless sensors in the brain.
Elon Musk and the much-heralded technology neuralink (neural lace).

s | lace

vltra-thin
mesh



https://www.darpa.mil/program/our-research/darpa-and-the-brain-initiative
https://www.darpa.mil/program/electrical-prescriptions
https://en.wikipedia.org/wiki/Neural_dust
https://neuralink.com/

Biomarkers from fIVIRI

Data Acquisition Image Preprocessing Feature Selection
(three sites in Japan) -
)-_. I'..;s‘u. %
2. l' . n’ Model for ASD
ff.ﬁ, [> five R, SLR
L Oyl "
' T ST L1-SCCA
ASD Ayl
(N=74) Models for other covariates
Demographic Medication

» properties status

f &.} Time course from Correlation matrix
fi’ each region among 140 regions

TD

‘ : 181 matrices with

Per subject diagnostic labels
AUC = 0.57

AUC = 0.93 C = g.86

P
P=6.7x10 ASD ' R

BS%5

(JAPAN)

Accuracy

N. Yahata et al, Psychiatry and Clinical Neurosciences 2017: 71



Biomarkers of mental disorders

Functional connectivity-based Recasting current nosology in more
classifiers for mental disorders biologically meaningful dimensions

‘?

MDD

|

Normal _—
(typically-developed)
v
Each axis represents proneness to

a specific disorder derived from the
corresponding FC-based classifier.

MDD, deep depression, SCZ, schizophrenia, OCD, obsessive-compulsive disorder, ASD
autism spectrum disorder. fMRI biomarkers allow for objective diagnosis.

N. Yahata et al, Psychiatry & Clinical Neurosciences 2017; 71: 215-237

Use it in neurofeedback.







Recent PhDs

e Kamil Bonna, Neural correlates of prediction errors during
reward and punishment learning (UMK Torun).

® Michat Komorowski, Locally specific human brain dynamics
automatically modeled using spectral features of MEG/EEG
signals (IPPT PAN, Warszawa).

® Ewa Ratajczak, Microstate neurodynamics in HRV biofeedback
(UMK Torun).




Brain fingerprinting

® Find unique patterns of brain activity, identify:
e brain regions of interest (ROI)
e active neural networks
e link with mental states, tasks, processes.

Several approaches:

® 1. Microstates and their transitions, GFP+SD
(Michel & Koenig 2018)

® 2.Spectral Fingerprints (Keitel & Gross 2016)

® 3. Recurrence quantification analysis.

[

08

10
|

e 4. fMRI networks (Yuan ... Bodurka, 2015).

T

&

® 5. Contextual Connectivity (Ciric et al. 2018)

S )

U:ﬁ!-:fﬁﬁ

“2th

® 6. Reconfigurable task-dependent modes
(Krienen et al. 2014)

_ oz' 1
=l0(: 'D':

80 T8
1

® 4+ TDA, many more approaches...




EEG localization and reconstruction

Dipo!e model Distributed model

—— v 2
d; = argmin || ¢ —Z.‘K)dj £
7

Rotating dipole

= Moving » Rotating
- Fixed

He et al. Rev. Biomed Eng (2018)

Sparse and Beamforming and
Bayesian framework scanning algorithms

i=ar%min vz, +eall#ll,

ST. | p—Kj |l gi*< &

IRES Beamformer (VBB)

MN (£;) family

i= arg}min Il d—571,%+ 207 II,°
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MN
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Nonlinear post hoc
normalization
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Spatial filters

® LCMV (Linearly Constrained Minimum Variance), classical reconstruction filter,
is a solution to the following problem: how measured ® on scalp relate to sources.
K - lead-field matrix; 6— dipole positions, j—activations; W — spatial filter, leadfield

D=K(0)j+n, jxWd, WK(9)=I

® LCMV has large error if:
® sources are correlated,
e signal to noise ratio (SNR) is low, or
e forward problem is ill-conditioned.

® Minimum variance pseudo-unbiased reduced-rank, MV-PURE:
T. Piotrowski, I. Yamada, IEEE Transactions on Signal Processing 56, 3408-3423, 2008

W =(arg minHWK(é’) —1,
jE]‘ ]’TI':"'-E_‘.L’,.

2
J

where X_ is a set of all matrices of rank at most r, and set Y denotes all unitary norms.
We use 15000 vertex FreeSurfer brain tessellation together with brain atlases that
provide parcellation of the mesh elements into 100-240 cortical patches (ROls).



SupFunSim

® SupFunSim: our library/Matlab /tollbox, direct models for EEG/MEG, on GitHub.

® Provides many spatial filters for reconstruction of EEG sources: linearly constrained
minimum-variance (LCMV), eigenspace LCMV, nulling (NL), minimum-variance
pseudo-unbiased reduced-rank (MV-PURE) ...

® Source-level directed connectivity analysis: partial directed coherence (PDC),
directed transfer function (DTF) measures.

® Works with FieldTrip EEG/ MEG software. Modular, object-oriented, using Jupyter
notes, allowing for comments and equations in LaTex.

A=Hg p:=R”H
B:=Hg,.y :=N"'"2H

88file calculate H Src.m
function model = calculate H Src(MODEL)
model = MODEL;

model.H Src R pinv(sgrtm(model.R)) * model.H Src;
model.H Src_ N pinv(sgrtm(model.N)) * model.H Src;
end

e K. Rykaczewski, J. Nikadon, W. Duch, T. Piotrowski, Neuroinformatics 19, 107-125, 2021.


https://github.com/IS-UMK/supFunSim.git

Understanding brains: ERP

ERP characteristics TP BRAIN PRODUCTS

What do brain signals tell us?

Evoked potentials:

® \isual evoked potential VEP, SSVEP
e Auditory evoked potential AEP

® Somatosensory evoked potential SEP
e Motor evoked potentials MEP

Event-Related Potentials, higher cognitive processing.

ERP — most popular, average of many trials.

® Negativity: N100 e Visual N1 e N170 ¢ N200 e N2pc e N400

® Positivity: P200 e P300 ¢ P3a ® P3b e Late positive component e P600
® (Contingent negative variation (CNV), Error-related negativity (ERN)

® Mismatch Negativity (MMN), Centro-parietal positivity (CPP)



https://en.wikipedia.org/wiki/Evoked_potential#Visual_evoked_potential
https://en.wikipedia.org/wiki/Steady_state_visually_evoked_potential
https://en.wikipedia.org/wiki/Evoked_potential#Auditory_evoked_potential
https://en.wikipedia.org/wiki/Evoked_potential#Somatosensory_evoked_potential
https://en.wikipedia.org/wiki/Evoked_potential#Motor_evoked_potentials
https://en.wikipedia.org/wiki/N100_(neuroscience)
https://en.wikipedia.org/wiki/Visual_N1
https://en.wikipedia.org/wiki/N170
https://en.wikipedia.org/wiki/N200_(neuroscience)
https://en.wikipedia.org/wiki/N2pc
https://en.wikipedia.org/wiki/N400_(neuroscience)
https://en.wikipedia.org/wiki/P200
https://en.wikipedia.org/wiki/P300_(neuroscience)
https://en.wikipedia.org/wiki/P3a
https://en.wikipedia.org/wiki/P3b
https://en.wikipedia.org/wiki/Late_positive_component
https://en.wikipedia.org/wiki/P600_(neuroscience)
https://en.wikipedia.org/wiki/Contingent_negative_variation
https://en.wikipedia.org/wiki/Error-related_negativity
https://en.wikipedia.org/wiki/Mismatch_negativity
https://www.nature.com/articles/s41598-019-41024-4

Understanding brains: microstates

Global EEG Power. P Boriliarve. B
4-7 states, 60-150 ms. —

Khanna et al. (2015)
Microstates in
Resting-State EEG.
Neuroscience and
Biobehavioral
Reviews.

Symbolic dynamics:
statistics of A-D
symbol strings. Fuzzy
Symbolic Dynamics
(FSD) + visualizations.

Fronto-Temporal
Dementia

o

AN
o

Duch W, Dobosz K.
(2011). Cognitive
Neurodynamics 5, 145

Dobosz K, Duch W.
(2010). Neural Networks,
23(4), 487-496.
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Microstates and their sources

Michel, C. M., & Koenig, T. (2018). EEG microstates as a tool for studying the temporal
dynamics of whole-brain neuronal networks: A review. Neurolmage, 180, 577-593.




HRV-EEG-feedback

Influence of HRV biofeedback training on microstates
and fluent intelligence (PhD of Ewa Ratajczak):

® distinguished 9 microstates during HRV-BFB;
® #5(G): prefrontal and right temporoparietal areas;

® H#9 (E): left hemispheric prefrontal cortex, insular
cortex and temporoparietal cortex

Visually guided somatosensory and affective control.

R|(v) | XY.Z)}=(22-55-16)[mm] ; (0,00E+0) ; 1




HRV-EEG-training

HRV-BFB training increased activation of microstates
e #4 (D): attentional/cognitive control network
e #7 (F): insula/circuit network

® Related to neural activity in EEG 0 and o bands,
neuroplasticity.

e Switching between external/internal attention
networks, enhanced cognitive control.

R|(Y) | XY.Z)}=(6,4-15)mm] ; (756E-3) ; 1




EEG and neurodynamics



Atlas of the natural frequencies, resting brain

Peakfrequencies in 9.5/18.2 Hz 11.6 /22.2 Hz

selected brain areas NN P.Fe

observed using & “

30 2 30 & E
IPG R POCG L . - PreCG-R
MEG in the resting @ 4 @g :
. 10 20 30

brain, averaged ke Frequency (hy)
149 Hz 17.3H

over 128 people. N7 e

Individual 0 o4 o8 12

¥ PoCG-R
differences? 5° @ AT L*(_\,
Brain disorders? iy

20.1 Hz 23.3 Hz 27.1Hz

Lol -

PoCG-L ., PreCG-R

@ @ MFG- L@ @F?ﬁm@ MFG»R

Capilla, A., Arana, L., Garcia-Huéscar, M., Melcén, M., Gross, J., & Campo, P.
The natural frequencies of the resting human brain: An MEG-based atlas.
Neurolmage 258 (2022) 119373



Spectral analysis

~ Sensor Space ,

I 2
Preprocessing |,
I

1-s segments 1st-level 2nd-level

LCMV " GM models | ' GM models )

weights AAL Atlas k-means k-means
| clustering clustering

Single-trial Shies =
i GM GM
[Fourier spectra) ™ rejection
MRI-MEG SOOI $2Z 0 T T Smmmee———e
co-registration normalisation

|
|
Artefact :
Rejection :
1
|

Create spectral fingerprints of all ROls.

Analyze EEG/MEG power spectrain 1 sec time
windows; project them to the source space of
ROIs based on brain atlas; i L) G i)
clusterize individual/group to create spectra. N

Normalised power
Normalised power-
=

A. Keitel & J. Gross. Individual human brain areas can
be identified from their characteristic spectral
activation fingerprints.

PLoS Biol 14, 1002498, 2016



Spectral fingerprints

Scatter Plot and Fitted Gaussian Mixture Contours

Modei 0
Modelt

Single
subject

|
d e ROI

€<

Precentral Gyrus (left)

* Pictures from Keitel & Gross 2016 and Fieldtrip Group model

One ROI, two or more spectra. Static picture showing natural frequencies.

A. Keitel, J. Gross, ,,Individual human brain areas can be identified from their characteristic
spectral activation fingerprints”, PLoS Biol 14(6), e1002498, 2016




Spectral fingerprints

HCP-RUN 2 N=88 HCP-RUN 2 N=88

. _ Raw spectral modes in ROl 2: Precentra _  Raw spectral modes in ROl 11; Frontal_Inf Oper L
Raw spectral modes in ROI 1: Precentral_L ‘ 1.5 - - -

3 —1-T=25%
2-T=33%
—3-T=46

P
Y,

—1-T=41%
2-T=61%

ormalised power
Mormalised power

10 20 5 10 20 1 I . . . 10 20
Frequencies (Hz) Frequencies (Hz) Frequencies (Hz)

® Example of spectra showing modes of oscillation characteristic to precentral left
and right gyrus, and much more complex opercular part of inferior frontal gyrus.
MEG data from the Human Connectome Project (HCP).



Spectral Fingerprint Challenges

The brain contour
of neurofeedback External chains of the neurofeedback system

Feedback

Electrodes

Amplifier

. . Source: O. R. Dobrushina et al. Front. Hum. Neurosci. 14,2020
Michat Komorowski

Method was tested for MEG © Can we extract ® Canwedoitinreal time
resting-state data, now features that will be for neurofeedback
' useful as biomarkers applications?

applied to EEG recordings.
for brain disorders?

M.K. Komorowski, K. ... W. Duch (2022)
ToFFi - Toolbox for Frequency-based Fingerprinting of
Brain Signals. Neurocomputing (revised + Arxives).

Are linear constraint
minimum variance filters
(LCMV) sufficient for signal
reconstruction?



Spectral fingerprints of cognitive processes

a Local activity

Decompose neurodynamics into

activations of subnetworks binding
ROIls at specific frequencies.

b Coherent
oscillations
(spectral

Oscillations can rapidly change, fingerprints)
each ROl is engaged in different
subnetworks for short time periods. —

This is reflected very crudely in m—
microstates, recurrence plots show : & oo Y S
more precise information_ Computationl C.omputatiol Computati03 Computation4

= e we w= Frequency i ii, it iv, v Cognitive variables

Figure 4 | Large-scale spectral fingerprints of cognitive processes. Schematic

S | ege I M DO nner T H & E n ge | A K illustration of how coherent oscillations provide ‘spectral fingerprints' for regrouping of
Z R 20 U Z ’ ' cognitive processes 1-3. a | Studies of neuronal activity in individual brain regions (circles)
1 H _ elucidate the activation of different regions (bold circles) and the encoding of
( 20 1 2 ) : S p eCt ra | fl n ge rp Il nts Of | d rge various cognitive variables (Roman numerals) during different cognitive processes.

Several cognitive variables (for example. different sensory features) are simultaneously
encoded in each region, but for simplicity only one variable is depicted per region. Note

H H that the pattern of local activity and encoding can be similar between processes.
Nature ReVIe wWs NEUI’OSCIence, 1 3' 1 2 1 b | Coherent oscillations allow for the characterization of the interactions between
different brain regions (coloured lines) during different cognitive processes. The frequency
of these oscillations (indicated by the colours) allows the corresponding network

scale neuronal interactions.




Recurrence analysis




Recurrence Quantification Analysis

Signal representation: up to 256 channels, sampling 512 Hz.
Takens theorem: attractors are recreated from signals sampled using time-delay

embedding, vectors Xi= (Ui, Ui, ..., Ui+(m-1)rAt).
Here m is the embedding dimension, and 7 is an index enumerating time delays, tAt.

Works for simple dynamical systems, but EEG/MEG is not simple at all.

Alternative representation: STFT, shows power distribution in subsequent time
windows. Here changes of spectrum every 100 ms, O1 electrode.

Recurrence matrices: 1 if closer than g, 0 otherwise; or use color for distance.
R(t,t';£) =0 (e —||x(t) - x(t) )

Recurrence plots: plot matrices to see the dynamics.
Visualize trajectories.
RQA: calculate various statistical measures based on recurrence matrices.



Simulations

Emergent neural simulator:

Aisa, B., Mingus, B., and O'Reilly, R
The emergent neural modeling system.
Neural Networks, 21, 1045, 2008.

Point neurons with 3 kinds of ion channels.

3-layer model of reading:

orthography, phonology, semantics =
distribution of activity over
140 microfeatures defining concepts.

Hidden layers OS/OP/SP_Hid in between.

In the brain: microfeature = subnetwork.

Learning: mapping one of the 3 layers to
the other two, LEABRA algorithm.

Fluctuations around final configuration =
attractors representing concepts.

How to see trajectory of neurodynamics,
attractor basins, transitions?

T

Semantics

T
1
-

OShidden SPhidden

iR ,\,A
i b
Jg “4 i8] Ty \&l

T ﬁl“ T1EWRTEL

I"""l SEANER RRREEATRGREARR
Orthography OPhidden Phonology




Trajectory visualization

Recurrence Plot Multidimensio
1800
1600
1400
1200
1000

kOO0

400

200 400 600 800 1000 1200 1400 1600 1800 2000

Recurrence plots and MDS visualization of trajectories of the brain activity.

Here evolution of 140-dim semantic layer activity during spontaneous associations
in the 40-words microdomain is presented, starting with the word “flag”.
Trajectories may be displayed using tSNE, UMAP, MDS or our FSD visualization.

Identify metastable states, calculate trapping times, recurrence rates, entropy ...



A

Recurrence network

Real brains, ECoG data: recurrence
plots depend on the similarity
threshold &, cosine distance,
Takens embedding of oscillatory
data with dimensiondand lag T, .

Varley, T. F., & Sporns, O. (2022).
Network Analysis of Time Series:
Novel Approaches to Network
Neuroscience.

Frontiers in Neuroscience, 15.
10.3389/fnins.2021.787068

For mathematically inclined:

Caputi, L., Pidnebesna, A., & Hlinka, J.
(2021). Promises and pitfalls of
topological data analysis for brain
connectivity analysis.

Neurolmage, 238, 118245.
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https://www.frontiersin.org/article/10.3389/fnins.2021.787068

t/f rep and bumps

High frequency
intermittent signals,
and low beta strong '

activation, ECoG data, f,,fst',g'i'f'rggfjaeﬁjtmap
BCl Competition III . W, (s.0)= [~ @)t
Msc thesis of M Szupke it
(2011), using EEGLab.

Wavelet transform

Bump decomposition 1 /1

Frequency (Hz)

1.61618 4.84853



STFT vs. embedding %

Takens theorem: attractors are
recreated from signals sampled
using time-delay embedding,

vectors Xi= (Ui, Us, ..., Uisnear). - LTI:Im .
Here m is the embedding .
dimension, and 7 is an index
enumerating time delays, TAt.

Amplitude (pV)

A
2

=)
5
=
[=]
o

Alternative representation: STFT,
shows power distribution in
subseguent time windows. Here
changes of spectrum every 100 ms,
O1 electrode.

15.0

W. Duch, t. Furman, K. Totpa, L. Minati, ’ Freq (H2)
Short-Time Fourier Transform and

Embedding Method for Recurrence
Quantification Analysis of EEG Time

Series. The European Physical Journal
DOI: 10.1140/epjs/s11734-022-00683-7

Power (LuV7)



https://doi.org/10.1140/epjs/s11734-022-00683-7

Time/frequency spectrograms & RPs

Information in t/f
spectrograms is
represented in
recurrence plots, that
can be analyzed using
RQA, recurrence
guantification analysis
to extract non-linear
features characterizing
dynamics, see
recurrence-plot.tk

Pipelines: raw signal to
X (emb) or Y (STFT) to
recurrence matrix to
non-linear features.
U=>X=>RX=>FX
U=>Y=>RS=>FS.

Freq (Hz)

Power (uV?)

Spectrogram

Recurrence Plot

00 1.0 20 3.0

Time (s)
0.8 1.6 2.4 3.2

Time (s)

Frequency Domain

15.0
Freq (Hz)



http://www.recurrence-plot.tk/rqa.php

Recurrence plots 0, 0
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Unthreshold RPs for delta and theta bands, Fz electrode.

Distance scale changes parameters of the metastable states along diagonal, and
influence non-linear parameters. tukasz Furman builds BrainPulse tools for analysis
of RPs. This movie shows changes of t/f spectra, RPs and STFT power spectra.



RP_SFT_concat-Fp2_CP6_n10.mp4

RQA measures

RR, recurrence rate, density of recurrence points in a recurrence plot:

percentage of recurrence points which form diagonal lines in the recurrence
plot of minimal length /.. or predictability of the dynamical system.

min

SN, LP0)

Lab=Eyin

S EP(8)

Laf=

DET =

The averaged diagonal line length:

Trapping time, measuring the average length of the vertical lines:

S o vP()

T — P min 7 + 10 other measures.
YN Pv) Unthreshold measures?

L V=Tyin




RPs, O1 electrode

(a) STFT open eyes: window size = 240 samples, € = 10.23 0.0 (b) STFT closed eyes: window size = 240 samples, € = 15.84
: « ! . v ' .

15.0 20.0 . . “o. ) L 15.0
time (s) time (s)

Example of recurrence plots, 30 s, resting state, electrode O1, subject SO01.
Dark dots show distances inside small € neighborhood.
How to avoid thresholds?




RQA features for 64 electrodes
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RQA features for 64 electrodes

Histograms of the

RQA features for all 98
subjects:

TT (trapping time),

DET (determinism),

L (average diagonal line
length).

Histograms of the projection
of 320 FS feature values

(5 RQA features x 64
electrodes), for all subjects,

LSVM projection, for all data.

UMAP visualization of the
320-dimensional Z column
vectors.

Task
] open_eyes
closed_eyes

Task
] open_eyes
closed_eyes

L =Ny

0.0 0.2 04 06 08 1.0

()
Task
] open_eyes
closed_eyes

UMAP: metric=hamming, n_neighb:



Cross-recurrence

Beta band, electrode FC5

L0 : :
200 400 600

Beta band, electrode F5

Beta band, electrode FC3

600 1
500 4
400 -
300 1
200 A

100 ~
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Beta band, electrode C5
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EEG analysis
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® EEG data, 128 channels, recursion graphs, power spectrum for two
electrodes, information flow and correlations between brain regions
(tukasz Furman).

oneczmie A @ & W & W



PAC_IMtest _inverse_circle_coh 8.0-12.0hz_vmin0.7
35.50

m

Od_RO.

R 1

)
o
P

Voo
9T
o AT

Ct-Ih
a1n

(5N
CHoROMR

ROV

L LBen ROVL
23 K0

1.00

0.95

0.90

0.85

0.80

0.75

0.70


PAC_IMtest_inverse_circle_coh_8.0-12.0hz_vmin0.7_2022-10-20.mp4

Wi w,'l il mm. Tt |'q wm'
J"‘“l\) "WML..!’\L. _J'

04 0.8

Electrode FC1 td=4 emb=28

norma 0.0

4.0 8.0 12.0 16.0 20.0 24.0 28.0 32.0 36.0 40.0

Frequency Domain

- 1 f.\” .|'., \”' A .u
3 VYN ,-{‘i,‘. “M ||

~o0o0POOO~
conmoONU®O

04 ’ 08
time (s)


RP_SFT_ALL_x264.lnk

Labeling states

Automatic labeling of states
and estimation of their
recurrence may be important
for biofeedback.

Metabolic costs of transitions
between states may be
important.

Ruminations? Pain states?
How external stimuli
influence this dynamics?

Needs automatic method for
recognition of metastable,
multivariate states.

More precise than
microstates.

Wentr = 5.071




Segmentation of states

Metastates plot over recurrence plot

Metastates plot EE

Metastates plot

5 14] 48

Time (s)
o
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N

53| 200ms
516/ 600ms N

4.0
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Multiple starts from the
same word lead to
different trajectories.
Calculate transition
probabilities between
metastable states from
frequency of transitions.

Why such transitions?

Linked state have
patterns sharing few
features, that recruit
less active, but strongly
connected neurons, and
relax those currently
active, making the
previous state
inaccessible for some

time (refractory period).

11 3/16 // 1125 212




To do: visualization and measures

Include max information in the RPs (recurrence plots).

e V1. Use color and show threshold as contours on the color plot.

e V2. Use 4 color schemes to show frequency of the dominating
amplitude, i.e. distance = intensity, color = band.

e V3. Use lower parts of RP plots for additional information.
e V3.1 Select frequency band and show only changes for this band.
e V3.2 Show distance to peaks of a chosen band.

e V4. Use fixed reference states, ex. to the most frequent state, or fix
rare reference state in oddball paradigm.

e Count RR frequency for each unigue state; it should show ruminations
in OCD, craving addicts or depression.

e V6. Fuzzy symbolic dynamics (FSD) or UMAP for plotting trajectories.
e V7.HMM for state labeling, identification of states.



To do list

Find good MCI data for testing our approach.

Experiment with simple similarity functions for STFT.

Develop fuzzy version of RQA features.

Automatic labeling of metastable states.

Check method for automatic embedding parameters (Marwan et al).
Check the effects of RPs smoothing on RQA parameters.

Create new RQA features based on labeled states, ex. distribution of
different states, most common states, metabolic costs!

Consider Pade approximants instead of STFT to define “oscillons”.
Consider multivariate matching pursuit for discovery of patterns
based on oscillons.

Average RQA to get SFP, use RQA instead of clustering in SFP.

Other signal decompositions: EMD, wavelets, spatio-temporal ICA...
Source representation vs. electrodes.

Multivariate options, synchronization to find subnetworks and RPs in
network space.

Cross-recurrence correlations, multivariate synchronization for
subnetworks ... coherence and information flow.



To do: applications

Al. Pathological spectral fingerprints - using ToFFl on patient's data
suffering from various problems: autism, Alzheimer, MCI ...

A2. Pathological RPs to analyze dynamics of switching that lead after
averaging to spectral fingerprints.

A3. Relations to microstate transitions for diagnosis.

A4. Synchronization of fronto-parietal theta as a sign of inhibition
control.

A5. Craving in addictions and frontal theta desynchronization.
A6. Analysis of psychosomatic problems for our clinical psychologists.
Analysis of real-time BCl applications.



fMRI and neurodynamics




Human connectome and MRI/fMRI

Node definition (parcelation)

Structural connectivity  Functional connectivity

(32
’ "_
""
%* 5
Correlation §
calculation #
Graph theory Whole-brain graph i

matrix

Correlation
matrix

Path &
efficiency

Clustering

Many toolboxes available for such analysis. Bullmore & Sporns (2009)



Effects of load and training.

Two experimental conditions: 1-back, 2-back, 35 subjects, letter N-back.

Nod Anatomical Functional
dof .f. © parcellation  parcellation
SHRTHON (90 nodes) (264 nodes)
Weigh'Fed Fisher’s
correlation S ccores
matrices
Binary Threshold :
correlation (0.01-0.6)
matrices
v ¥
global efficiency | local efficiency | modularity

Finc, Bonna, Lewandowska, Wolak, Nikadon, Dreszer, Duch, Kiihn. Transition of the
functional brain network related to increasing cognitive demands. Human Brain
Mapping 38, 3659-3674, 2017.



Brain modules and cognitive processes

® Simple and more difficult tasks,

requiring the whole-brain network
reorganization. Provincial hubs

Left: 1-back local hubs
Right: 2-back local hubs

Average over 35 participants.

Dynamical change of the landscape of
attractors, depending on the cognitive
load. Less local (especially in DMIN), more
global binding (especially in PFC).

|| Fronto-Parietal (FP) || Defoutt Mode M) [l Cinguio-Opericuiar (o) [ Dorsal Attention (Da)

I Memory (MEM) B ventral Attention (va) [] Auditory (au) I visual (vis)
[ somato-Motor (SOM) Salience (SA) Subcortical (SUB) [ ] other

K. Finc, et al. Transition of the functional brain ... Human Brain Mapping 38, 3659-3674,
2017.



Effect of cognitive load on info flow

® Simple and more difficult tasks,
requiring the whole-brain network
reorganization.

Connector hubs

Left: 1-back connector hubs
Right: 2-back connector hubs

Average over 35 participants.

Dynamical change of the landscape of
attractors, depending on the cognitive load
— System 2 (D. Khaneman).

DMN areas engaged in global binding!

|| Fronto-Parietal (FP) | [Jl] Defoutt Mode M) [l Cinguio-Opericuiar (o) [ Dorsal Attention (Da)

I Memory (MEM) I Ventral Attention (vA) [] Auditory (AU) I visual (vis)
[ somato-Motor (SOM) Salience (SA) Subcortical (SUB) [ ] other

K. Finc, et al. Transition of the functional brain ... Human Brain Mapping 38, 3659-3674, 2017.



Working memory training
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6-week training, dual n-back task (visual+auditory), changes in module allegiance of
fronto-parietal and default-mode networks. Each matrix element represents the
probability that the pair of nodes is assigned to the same community.

Segregation of task-relevant DMN and FPN regions is a result of training and complex
task automation, i.e. from conscious to automated processing.



Working memory training
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System System

Whole-brain changes in module allegiance between the start and after 6-week of
working memory training. (a) Changes in node allegiance as reflected in the two-tailed
t-test. (b) Significant increase * in the default mode DM, fronto-parietal ventral
attention VA, salience SAL, cingulo-opercular CO, and auditory systems AU recruitment.

*

B

Recruitment change (T stat.)
N

Recruitment change (T stat.)

Finc, Bonna, He, Lydon-Staley, Kiihn, Duch, Bassett, Dynamic reconfiguration of functional brain
networks during working memory training. Nature Communications 11 (2020).



Simulations of heurodynamics



Mulitimodal foundational models

Multimodal transfer learning - different types of modalities with different
statistical properties, embedded in the same model.

® Multimodal Affective Computing (MAC), sentiment analysis.
® Natural Language for Visual Reasoning (NLVR).

e Multimodal Machine Translation (MMT).

e Visual Retrieval (VR) and Vision-Language Navigation (VLN).

Question 7

Image: Center for Answering @
Research on Data R

Foundation Models T )
(CRFM), Stanford ~./| 4 ,
Institute for Human- [l %&b o
Centered Artificial W  AUE Jeinns | Foundation e 4 .

Intelligence (HAI) 4 oo &

Structured
*  Data

. = 45" Object
Can this be used to 30 Signals gz b &necogmuon

analyze brain
signal patterns?

Instruction

%' Following ..


https://arxiv.org/abs/2108.07258
https://crfm.stanford.edu/
https://hai.stanford.edu/

MILC model

Rahman, ... & Plis, S. M. (2022). Interpreting models interpreting brain
dynamics. Scientific Reports, 12(1), 12023. Supervised pretraining scheme,
which maximizes “Mutual Information Local to (whole) Context” (MILC).

automatic introspection

train 3 versions of the pre-trained model
of trained models

to classify controls from
patients separately.
Transfer representations
learned at the
self-supervised stage to
1. Autism

2. Schizophrenia

3. Alzheimer's disease

pre-train the model
to discriminate
healthy adults of
the Human
Connectome

Project

(our self-supervised
approach to learning
from dynamics)

s

0 0

-

Subjects

Construct a model
to assist in discovery

he model should be able to
- learn from dynamical data
- retain interpretations
(our whole MILC model)

Subjects

automaticvalidation
of introspection results

spatial
components
discriminative introspection maps

3. Alzheimer's Disease

2. Schizophrenia
Patients (older)

1. Autism Spectrum
Patients (adult)

Patients (younger)

.
.
.

spatial
components

Subjects

Subjects




MILC model results

Schizophrenia Alzheimer's disease

Autism spectrum

kkkk  FhEE ns ns ns
g
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Subjects Per Class

o
(o)}
e

chanc

0.4

MILC
BN W/ pretraining [] Fully Connected Network [ SVM BN Random Forest
[ w/o pretraining [ Linear SVM [ Logistic Regression

Deep learning + MILC can learn directly from high-dimensional signal dynamics
even in small datasets (15 subjects), after pre-training on large data.

Mutual information maximization between the whole sequence (context
embedding) and local windows (local embedding) from the same sequence.

FNC (Functional Network Connectivity) was computed as Pearson’s
correlations between time courses of the components obtained by spatial
independent component analysis (sICA).



MILC diagnosis

Top 10% FNC for patients computed using most 5% of the salient data as
thresholded using feature attribution maps (saliency maps) for 3 disorders.

A
attention/cognitive control (CC: 17)

default-mode (DM: 7)

auditory (AD: 2) e visual (VI: 9)

Reference single-subject saliency mask at varying degrees of data coverage




Learning in real situations

Learning complex information creates conceptual grid, each node = metastable brain
state, links = associations, thinking = transitions between states, following associations.
Conceptual grid approximates environmental states, but rapid learning distorts
relations.

Strong emotions increase neuroplasticity, but may lead to accidental associations, save
mental energy, creating ,sinks” that attract many unrelated episodic memory states.

Growing Neural Gas model, trained on blue patches.




Memoids ...

In extreme cases everything is associated with one great idea or cause.
“A lie that is repeated a thousand times becomes truth”.

World view is totally distorted, mind states
form one big memplex ...

® Extraterrestials, politics, Nazis, religion,
apocalypse, vaccines, 5G ... anything.

e Simplifies dynamics, saves energy.

The rapid freezing of high
neuroplasticity (RFHN) model.
Overtraining => inhibition of
alternatives!

Duch W. (2021) Memetics and Neural Models
of Conspiracy Theories. Patterns. Cell Press.




Conclusions

® Neurodynamics is the key to understanding mental states.
BMI has now hundreds of applications, medical, entertainment,
but does not use cognitive architectures to build better models.

® Simulations show how attractor networks create metastable states,
behavioral trajectories, test hypothesis (autism, ADHD, belief formation).

® Brain networks have fluid nature: dynamic, change due to priming, history,
refraction, cognitive load, memory training, emotional arousal, aging.

® Many brain fingerprinting methods exists; we have focused on microstates,
spectral fingerprinting and recurrence analysis.

® Neurocognitive technologies may help to diagnose, repair and optimize brain
processes, improve Al algorithms. Develop close-loop systems based on
DecNef and FCNef approaches.

Neurocognitive technologies will profoundly change ourselves.
The integration of brains with Al becomes feasible. Memory implants?
Brain synchronization? Metaverse? Impossible yesterday common tomorrow.



BIMI perspectives

BMI has now hundreds of applications, from medical to entertainment.
Neuroprothesis and neurorehabilitation are coming of age.

ECoG and intracortical recordings show what is possible with direct access
to cortex.

Hippocampal memory prothesis is a step towards deep future.

Medical diagnostics and closed loop systems for therapy of brain disorders
are the driving forces.

DecNef and FCNef approaches used by rt-FMRI should be converted to EEG

Al development, especially foundational models, should help in creation of
more accurate models, enable transfer learning.

Neurocognitive technologies will profoundly change our selves.
The integration of brains with Al becomes feasible.

Metaverse? Brain synch?

What was impossible yesterday tomorrow will be common.
The singularity may come faster than we think!



Towards Human-like Intelligence

IEEE Computational Intelligence Society Task Force (Mandziuk, Duch, M. Wozniak),
Towards Human-like Intelligence

3EE«Sxmpasiu'mFS,e;r.ie_s on Computational Intelligence}
== IEEEZSSCL 2013 3 ED
S {0 V) Y 19,FrigzApril 2013, .Singapore ..

7T TR Y e ...

Call for Papers http://www.ieee-ssci.org/ -y "ttllieence

IEEE SSCI CIHLI 2022 Symposium on Computational Intelligence for Human-like
Intelligence, Singapore.

AGI conference, Journal of Artificial General Intelligence comments on Cognitive
Architectures and Autonomy: A Comparative Review (eds. Tan, Franklin, Duch).

BICA Annual International Conf. on Biologically Inspired Cognitive Architectures,
11th Annual Meeting of the BICA Society, Natal, Brazil, 2020.

Brain-Mind Institute Schools International Conference on Brain-Mind (ICBM) and
Brain-Mind Magazine (Juyang Weng, Michigan SU).



http://www.brain-mind-institute.org/

In search of sources of brain’s
cognitive activity
Project ,,Symfonia”, NCN, Krakéw, 18.07.2016
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Intelligence?

Google: Wlodek Duch
=> talks, papers, lectures ...



